Степанов Анатолий Викторович

Место работы автора, адрес/электронная почта: ФИЦ "Якутский научный центр СО РАН", Институт физико-технических проблем Севера им. В. П. Ларионова СО РАН ; 677890, г. Якутск, ул. Октябрьская, 1 ; e-mail: a.v.stepanov@iptpn.ysn.ru ; http://iptpn.ysn.ru

Ученая степень, ученое звание: д-р техн. наук

Область научных интересов: Экспериментальные исследования и математическое моделирование процессов тепломассопереноса и термомеханики пористых и дисперсных сред

ID Автора: SPIN-код: 7556-1570, РИНЦ AuthorID: 42162

Связанная организация: Институт физико-технических проблем Севера им. В. П. Ларионова

Документы 1 - 10 из 12
1.

Количество страниц: 6 с.

Большое количество заторфованных грунтов на территории Российской Федерации, особенно в Арктической зоне, обуславливает необходимость изучения их температурного режима и теплофизических свойств. В этой работе приводятся экспериментальные данные по определению пористости, теплопроводности и количества незамерзшей воды песчаных грунтов с различной степенью содержания торфа. Экспериментальные исследования проводились на образцах с нарушенной структурой, которые были представлены слаборазложившимся торфом, среднезернистым речным песком и их различными смесями. Установлено, что степень заторфованности влияет на такие физические величины, как пористость, теплопроводность и количество незамерзшей воды. Для талых заторфованных песчаных грунтов при увеличении степени заторфованности значение пористости увеличивается. Как для талых, так и для мерзлых заторфованных песчаных грунтов теплопроводность с увеличением степени заторфованности уменьшается. При этом теплопроводность для мерзлых грунтов выше, чем для талых. Количество незамерзшей воды также зависит от степени заторфованности грунта и при ее увеличении уменьшается. Измеренные теплофизические свойства заторфованного песчаного грунта могут быть использованы при моделировании температурного режима в зоне распространения мерзлых и талых торфяных грунтов.
The large amount of peaty soils on the territory of the Russian Federation, especially in the Arctic zone, necessitates the study of their temperature regime and thermophysical properties. The paper presents the results of an experimental study of the thermal conductivity and amount of unfrozen water in sandy soils with varying degrees of peat content. Experiments were carried out on samples with a damaged structure, which were represented by slightly decomposed peat, medium-grained river sand and their various mixtures. It has been established that the degree of peat content affects such physical values as porosity, thermal conductivity and the amount of unfrozen water. For thawed peaty sandy soils, as the degree of peat content increases, the porosity value increases. For both thawed and frozen peaty sand soils, thermal conductivity decreases with increasing degree of peat content. Moreover, the thermal conductivity for frozen soils are higher than for thawed soils. The amount of unfrozen water also depends on the degree of peat in the soil and decreases as it increases. The measured thermophysical properties of peaty sand soil can be used to model the temperature regime in the area of frozen and thawed peat soils.

Теплофизические свойства торфов и заторфованных песчаных грунтов / Протодьяконова Н. А., Степанов А. В., Тимофеев А. М. [и др.] ; Институт физико-технических проблем Севера им. В. П. Ларионова // Успехи современного естествознания. - 2024. - N 1. - С. 52-57. - DOI: 10.17513/use.38207
DOI: 10.17513/use.38207

2.

Количество страниц: 6 с.

Исследование направлено на решение актуальной проблемы стабилизации температурного режима площадок строительства и эксплуатации инженерных сооружений в условиях криолитозоны Республики Саха (Якутия) и изменяющегося климата. Применяемый в настоящий момент метод охлаждения грунта с помощью сезонно действующих охлаждающих устройств требует, при всей его эффективности, продолжительного времени воздействия и значительно задерживает сроки строительства, что в ряде случаев неприемлемо. С целью оценки эффективности и перспективности технологии быстрой заморозки грунта с применением твердого диоксида углерода (сухой лед) для охлаждения вечномерзлых грунтов был выполнен натурный эксперимент. Для проведения эксперимента был оборудован полигон на одной из строительных площадок г. Якутска с обустройством охладительной и термометрических скважин. Во время эксперимента велась регистрация температурного поля грунта и температуры внутри охладительной скважины. В результате проведенных экспериментов получены фактические данные по распределению температуры в грунте в зависимости от температуры и расстояния от охладительной скважины в процессе охлаждающего воздействия и после него. Полученные результаты дают основания для оценки испытанной технологии как перспективной в условиях многолетнемерзлых грунтов Якутии.
The study is aimed at solving the urgent problem of stabilizing the temperature regime of construction sites and operation of engineering structures in the permafrost zone of the Republic of Sakha (Yakutia) and a changing climate. The currently used method of soil cooling using seasonally operating cooling devices, despite its effectiveness, requires a long exposure time and significantly delays construction time, which in some cases is unacceptable. In order to evaluate the effectiveness and prospects of the technology of rapid soil freezing using solid carbon dioxide (dry ice) for cooling permafrost soils, a full-scale experiment was carried out. To conduct the experiment, a test site was equipped at one of the construction sites in Yakutsk with the installation of cooling and thermometric wells. During the experiment, the temperature field of the soil and the temperature inside the cooling well were recorded. As a result of the experiments, actual data were obtained on the distribution of temperature in the soil depending on the temperature and distance from the cooling well during the cooling effect and after it. The results obtained provide grounds for assessing the tested technology as promising in the conditions of permafrost soils in Yakutia.

Экспериментальные исследования процесса охлаждения грунта с применением твердого диоксида углерода в условиях криолитозоны Якутии / Большев К. Н., Степанов А. В., Малышев А. В. [и др.] ; Институт физико-технических проблем Севера им. В. П. Ларионова, Якутский государственный проектный научно-исследовательский институт строительства // Успехи современного естествознания. - 2023. - N 12. - С. 204-209. - DOI: 10.17513/use.38193
DOI: 10.17513/use.38193

3.

Ответственность: Рожин Игорь Иванович (Редактор), Васильев Василий Иванович (Прочие), Степанов Анатолий Викторович (Прочие), Тимофеев Айал Михайлович (Прочие)

Издательство: СО РАН

Год выпуска: 2023

Количество страниц: 172 с.

В монографии рассматриваются проблемы численного моделирования тепло влажностного режима в многолетнемерзлых грунтах. Рассмотрен вопрос восстановления неизвестных параметров в зоне фазового перехода при решении некорректных обратных задач теплопроводности. Правильное определение функции количества незамерзшей воды позволяет корректно описать тепловлажностный режим промерзаюшего-протаивающего мерзлого грунта и провести расчет напряженно-деформированного состояния конструкции при циклических воздействиях внешней среды. Книга предназначена для мерзлотоведов, аспирантов, студентов вузов и всех специалистов, интересующихся освоением и развитием районов распространения многолетней мерзлоты

Пермяков, П. П. Математическое моделирование негативных мерзлотных процессов / П. П. Пермяков : ответственный редактор И. И. Рожин : рецензенты : доктор физико-математических наук В. И. Васильев, доктор технических наук А. В. Степанов, доктор технических наук А. М. Тимофеев – Новосибирск : СО РАН, 2023. – 160 c. – 978-5-6048598-7-2.
DOI: 10.53954/9785604859872

4.

Количество страниц: 10 с.

В работе моделируется температурное поле массива грунтов вблизи заглубленного магистрального газопровода. Целью теплового расчета является изучение влияния его теплоизоляции на грунты и определение времени формирования предельного радиуса растепления грунтов вокруг газопровода. Теплообмен газопровода с окружающим массивом грунтов исследуется с учетом ряда сезонных факторов, оказывающих на него влияние, таких как солнечная радиация и альбедо поверхности, снежный покров, характеристики атмосферного воздуха, а также при циклических изменениях температуры транспортируемого газа. Температуры транспортируемого газа, соответствующие выбранному участку газопровода, приняты на основании тепловых расчетов газопровода. Переменные значения температур обусловлены увеличением подачи газа в магистральный газопровод в разные сроки его эксплуатации. Методом исследования является математическое моделирование. На основании результатов вычислительного эксперимента были определены ореолы протаивания-промерзания и температуры грунтов оснований на выбранном участке магистрального газопровода. Данная информация необходима для прогнозирования устойчивости грунтового основания, а следовательно, и безопасной эксплуатации газопровода. На основании полученных данных могут быть приняты технические решения (тип прокладки магистрального газопровода), обеспечивающие его надежность в процессе эксплуатации. Рассмотрены мероприятия по инженерной защите газопровода.

Температурное поле массива многолетнемерзлых грунтов под влиянием магистрального газопровода / Рожин И. И., Ефимов В. М., Степанов А.В. [и др.] ; Институт проблем нефти и газа, Институт физико-технических проблем Севера им. В. П. Ларионова // Успехи современного естествознания. - 2023. - N 1. - С. 84-93.
DOI: 10.17513/use.37989

5.

Количество страниц: 5 с.

В настоящее время в связи с интенсивным освоением арктического побережья становится актуальным прогнозирование температурного режима мерзлых засоленных грунтов, которые используются в качестве оснований для строительства и эксплуатации сложных инженерных сооружений. Из-за большего содержания в них незамерзшей воды засоленные мерзлые грунты являются менее прочными, чем незасоленные. Засоленность грунтов оказывает большое влияние на тепломассообменные и физико-механические свойства таких грунтов. Основной вклад в изменение этих свойств вносит количество незамерзшей воды. Как известно, незамерзшая вода зависит от температуры замерзания, концентрации порового раствора и начальной влажности. В данной работе приведены результаты экспериментального определения количества незамерзшей воды в зависимости от температуры для засоленного песчаного грунта. Экспериментальные исследования были проведены на образцах речного песка, взятого на берегу р. Лены. Образцы песка увлажнялись раствором хлористого натрия, концентрация которого изменялась в пределах от 0 до 20 %, начальная влажность варьировалась от 4,2 до 20 %. Количество незамерзшей воды при различных температурах определено методом непрерывного ввода тепла, разработанным в Институте физико-технических проблем Севера им. В.П. Ларионова СО РАН. Используя полученные экспериментальные данные, выведена формула, позволяющая рассчитать количество незамерзшей воды при любом изменении начальной влажности, температуры и концентрации порового раствора. Сравнение полученных расчетных данных показало хорошее совпадение с экспериментальными данными. Полученная формула применима только для засоленных песчаных грунтов.

Количество незамерзшей воды в засоленных песчаных грунтах / Таппырова Н. И., Тимофеев А. М., Степанов А. В. [и др.] ; Институт физико-технических проблем Севера им. В. П. Ларионова // Успехи современного естествознания. - 2022. - N 12. - С. 201-205.
DOI: 10.17513/use.37969

6.

Количество страниц: 4 с.

Представлены результаты экспериментальных исследований фазового состава воды в загрязненных нефтепродуктами грунтах при отрицательных температурах. Полученные результаты сопоставляются с данными измерений теплопроводности и коэффициента фильтрации воды через загрязненный грунт.

Влияние загрязнения нефтепродуктами на количество незамерзшей воды и фильтрационные свойства грунтов / О. Н. Кравцова, А. В. Малышев, Е. Г.Старостин [и др.] ; Институт физико-технических проблем им. В. П. Ларионова // Наука и образование. - 2005. - N 1 (37). - С. 74-77.

7.

Ответственность: Степанов Анатолий Викторович (Прочие), Левин А. В. (Прочие), Сыромятникова Айталина Степановна (Прочие)

Издательство: Издательство Сибирского отделения Российской академии наук

Год выпуска: 2018

Количество страниц: 116 с.

Настоящая монография знакомит читателя с концепцией на­ копления повреждений в материалах и конструкциях (damage mecha­ nics), содержит результаты экспериментальных исследований меха­ нических свойств колесной стали и выявления особенностей дефек­ тов, возникающих при эксплуатации железнодорожной техники в эк­ стремальных климатических условиях российских Арктики и Субарк­ тики, а также соответствующие теоретические модели и практичес­ кие методики. Впервые получены соотношения, связывающие изме­ нение динамической прочности стали при низких температурах с ус­ коренным накоплением повреждений, и предложена методика оцен­ ки поврежденности и ресурса по климатическим данным, что позво­ ляет применять разработанные подходы для любых регионов Земли и других планет с экстремальными условиями эксплуатации. Даны кон­ кретные рекомендации по применению разработанной методики и предложены методы повышения ресурса железнодорожных колес. Книга предназначена для специалистов в области оценки проч­ ности и ресурса, обеспечения безопасности эксплуатации техничес­ ких систем и комплексов в экстремальных условиях, а также для сту­ дентов и аспирантов — физиков, механиков, горняков, строителей, специализирующихся в освоении регионов с экстремальными клима­ тическими условиями, моделировании процессов и систем, предназ­ наченных для эксплуатации в условиях Арктики и Субарктики, а также для справочных целей. Может быть полезна школьникам старших клас­ сов при выполнении первых научно-исследовательских работ.

Григорьев, А. В. Надежность и ресурс технических систем в экстремальных условиях эксплуатации Арктики и Субарктики : железнодорожный транспорт : [монография] / А. В. Григорьев, В. В. Лепов ; [рецензенты: А. В. Степанов, А. В. Левин, А. С. Сыромятникова] / Российская академия наук, Сибирское отделение, Институт физико-технических проблем Севера им. В. П. Ларионова. – Новосибирск : Издательство Сибирского отделения Российской академии наук, 2018. – 110, [1] с.
DOI: 10.15372/RELIABILITIY2018GAV

8.

Количество страниц: 6 с.

Определение термического сопротивления слоя теплоизоляции "броня" на основе связующего полимера и керамических микросфер / А. В. Степанов, Е. Г. Старостин, О. Н. Кравцова, А. В. Малышев // Труды Евразийского симпозиума по проблемам надежности материалов и машин для регионов холодного климата : пленарные доклады, 1-3 декабря 2014 г. — Санкт-Петербург : Издательство Политехнического университета, 2014. — С. 357-361.

9.

Количество страниц: 6 с.

Рассматривается математическая модель совместной прокладки сетей водопровода и квартальных тепловых сетей. Целью статьи является исследование влияния излучения на процесс сложного теплообмена, происходящего в кожухе теплоизоляции между элементами конструкции. Приведены результаты математического моделирования тепловых потерь с учетом лучистой составляющей. При расчете тепловых потоков, которые теряет трубопровод при транспортировке теплоносителя через тепловую изоляцию, обычно учитывается процесс передачи теплоты путем теплопроводности и конвекции. Лучистой составляющей при этом в большинстве случаев пренебрегают. Особенно заметно влияние теплопередачи путем лучеиспускания и конвекции при использовании теплоизоляционных изделий с крупными порами, воздушными прослойками. Рассматривается наземная конфигурация трубопровода и водопровода, уложенного в общую тепловую изоляцию, изготовленную из минеральной ваты. При совместной прокладке трубопроводов происходит сложный лучистый теплообмен, который состоит для любого, одного из этих трубопроводов из излучения отраженного от другого трубопровода и собственного излучения. Рассчитывается нестационарное температурное поле конструкции, состоящей из двух параллельно уложенных трубопроводов с разными диаметрами, лежащих в общей теплоизоляционной конструкции, изготовленной из минеральной ваты. Элементы конструкции обмениваются теплом между собой и окружающей средой посредством конвекции и излучения.
This paper considers a mathematical model of joint laying of water pipeline networks and district heat networks. The purpose of the work is to study the effect of radiation on the process of complex heat exchange taking place in the housing insulation between structural elements. The results of mathematical simulation of the heat loss taking into account the radiant component are given. When calculating the heat flows which are lost in the pipeline through thermal insulation at transporting the coolant, the heat transfer process is usually considered by means of conduction and convection. The radiant component is neglected in most cases. The influence of heat transfer by radiation and convection is particularly noticeable using thermal insulation products with large pores and air gaps. A ground configuration of a pipe line and water pipe line laid in a joint thermal insulation made of mineral wool is considered. When laying joint pipelines, complex radiative heat transfer occurs. It consists, for each one of these pipelines, of radiation reflected from the other pipeline and self-radiation. A non-stationary temperature field of the structure, consisting of two parallel stacked pipes with different diameters lying in a joint insulating structure made of mineral wool, is calculated. The construction elements exchange heat with each other and the environment by convection and radiation.

Степанов, А. В. Оценка влияния лучистой составляющей на сложный теплообмен между сетевым трубопроводом и водопроводом при совместной прокладке / А. В. Степанова, Г. Н. Егорова // Наука и образование. — 2017. — N 4 (88), октябрь-декабрь. — С. 93-98.

10.
Заглавие: Хладостойкость

Ответственность: Лебедев Михаил Петрович (Редактор), Матвиенко Юрий Григорьевич (Редактор), Разумовский Игорь Александрович, Лепов Валерий Валерьевич (Автор обозрения, рецензии), Степанов Анатолий Викторович (Автор обозрения, рецензии)

Издательство: Издательство СО РАН

Год выпуска: 2011

Количество страниц: 204 с.

Монография посвящена описанию метода оценки хладостойкости крупногабаритных тонкостенных конструкций, основанного на использовании температуры эксплуатации как расчетного фактора. Доказана применимость в качестве расчетно-экспериментального параметра оценки хладостойкости второй критической температуры вязкохрупкого перехода по Махутову Н. А.. Показана применимость метода для анализа причин разрушения элементов металлоконструкций и для обработки результатов натурных испытаний тонкостенных металлоконструкций типа цилиндрических сосудов давления и труб большого диаметра в условиях климатических температур г. Якутска. Особо показана применимость метода для оценки хладостойкости тонкостенных металлоконструкций после длительной эксплуатации в условиях Крайнего Севера.

Махутов, Н. А. Хладостойкость : (метод инженерной оценки) / Н. А. Махутов, А. В. Лыглаев, А. М. Большаков ; ответственные редакторы: доктор технических наук, профессор М. П. Лебедев, доктор технических наук, профессор Ю. Г. Матвиенко. —Новосибирск : Издательство СО РАН, 2011. — 194 c. — ISBN 978-5-7692-1202-4.